Standardize and append a batch of data#
Here, we’ll learn
how to standardize a less well curated collection
how to append it to the growing versioned collection
import lamindb as ln
import lnschema_bionty as lb
ln.settings.verbosity = "hint"
lb.settings.auto_save_parents = False
ln.track()
💡 lamindb instance: testuser1/test-scrna
💡 notebook imports: lamindb==0.66.0 lnschema_bionty==0.37.2
💡 saved: Transform(uid='ManDYgmftZ8C5zKv', name='Standardize and append a batch of data', short_name='scrna2', version='1', type=notebook, updated_at=2024-01-08 08:54:16 UTC, created_by_id=1)
💡 saved: Run(uid='Fet6dUOkqCXk3UGiDKMH', run_at=2024-01-08 08:54:16 UTC, transform_id=2, created_by_id=1)
💡 tracked pip freeze > /home/runner/.cache/lamindb/run_env_pip_Fet6dUOkqCXk3UGiDKMH.txt
Standardize a data shard#
Let’s now consider a collection with less-well curated features:
adata = ln.dev.datasets.anndata_pbmc68k_reduced()
adata
Show code cell output
AnnData object with n_obs × n_vars = 70 × 765
obs: 'cell_type', 'n_genes', 'percent_mito', 'louvain'
var: 'n_counts', 'highly_variable'
uns: 'louvain', 'louvain_colors', 'neighbors', 'pca'
obsm: 'X_pca', 'X_umap'
varm: 'PCs'
obsp: 'connectivities', 'distances'
We are still working with human data, and can globally set an organism:
lb.settings.organism = "human"
Standardize & validate genes #
This data shard is indexed by gene symbols which we’ll want to map on Ensemble ids:
adata.var.head()
Show code cell output
n_counts | highly_variable | |
---|---|---|
index | ||
HES4 | 1153.387451 | True |
TNFRSF4 | 304.358154 | True |
SSU72 | 2530.272705 | False |
PARK7 | 7451.664062 | False |
RBP7 | 272.811035 | True |
Let’s inspect the identifiers:
lb.Gene.inspect(adata.var.index, lb.Gene.symbol)
Show code cell output
✅ 695 terms (90.80%) are validated for symbol
❗ 70 terms (9.20%) are not validated for symbol: ATPIF1, C1orf228, CCBL2, RP11-782C8.1, RP11-277L2.3, RP11-156E8.1, AC079767.4, GPX1, H1FX, SELT, ATP5I, IGJ, CCDC109B, FYB, H2AFY, FAM65B, HIST1H4C, HIST1H1E, ZNRD1, C6orf48, ...
detected 54 terms with synonyms: ATPIF1, C1orf228, CCBL2, AC079767.4, H1FX, SELT, ATP5I, IGJ, CCDC109B, FYB, H2AFY, FAM65B, HIST1H4C, HIST1H1E, ZNRD1, C6orf48, SEPT7, WBSCR22, RSBN1L-AS1, CCDC132, ...
→ standardize terms via .standardize()
detected 5 Gene terms in Bionty for symbol: 'SNORD3B-2', 'RN7SL1', 'GPX1', 'IGLL5', 'SOD2'
→ add records from Bionty to your Gene registry via .from_values()
couldn't validate 11 terms: 'RP11-277L2.3', 'RP11-489E7.4', 'RP11-390E23.6', 'CTD-3138B18.5', 'RP3-467N11.1', 'RP11-291B21.2', 'TMBIM4-1', 'RP11-782C8.1', 'RP11-156E8.1', 'AC084018.1', 'RP11-620J15.3'
→ if you are sure, create new records via ln.Gene() and save to your registry
<lamin_utils._inspect.InspectResult at 0x7f3ca386c400>
Let’s first standardize the gene symbols from synonyms:
adata.var.index = lb.Gene.standardize(adata.var.index, lb.Gene.symbol)
validated = lb.Gene.validate(adata.var.index, lb.Gene.symbol)
💡 standardized 749/765 terms
✅ 749 terms (97.90%) are validated for symbol
❗ 16 terms (2.10%) are not validated for symbol: RP11-782C8.1, RP11-277L2.3, RP11-156E8.1, GPX1, RP3-467N11.1, SOD2, RP11-390E23.6, RP11-489E7.4, RP11-291B21.2, RP11-620J15.3, TMBIM4-1, AC084018.1, RN7SL1, SNORD3B-2, CTD-3138B18.5, IGLL5
We only want to register data with validated genes:
adata_validated = adata[:, validated].copy()
Now that all symbols are validated, let’s convert them to Ensembl ids via standardize()
. Note that this is an ambiguous mapping and the first match is kept because the keep
arg of .standardize()
defaults to "first"
:
adata_validated.var["ensembl_gene_id"] = lb.Gene.standardize(
adata_validated.var.index,
field=lb.Gene.symbol,
return_field=lb.Gene.ensembl_gene_id,
)
adata_validated.var.index.name = "symbol"
adata_validated.var = adata_validated.var.reset_index().set_index("ensembl_gene_id")
adata_validated.var.head()
Show code cell output
💡 standardized 749/749 terms
symbol | n_counts | highly_variable | |
---|---|---|---|
ensembl_gene_id | |||
ENSG00000188290 | HES4 | 1153.387451 | True |
ENSG00000186827 | TNFRSF4 | 304.358154 | True |
ENSG00000160075 | SSU72 | 2530.272705 | False |
ENSG00000116288 | PARK7 | 7451.664062 | False |
ENSG00000162444 | RBP7 | 272.811035 | True |
Here, we’ll use .raw
:
adata_validated.raw = adata.raw[:, validated].to_adata()
adata_validated.raw.var.index = adata_validated.var.index
Standardize & validate cell types #
Inspection shows none of the terms are validated:
inspector = lb.CellType.inspect(adata_validated.obs.cell_type)
Show code cell output
❗ received 9 unique terms, 61 empty/duplicated terms are ignored
❗ 9 terms (100.00%) are not validated for name: Dendritic cells, CD19+ B, CD4+/CD45RO+ Memory, CD8+ Cytotoxic T, CD4+/CD25 T Reg, CD14+ Monocytes, CD56+ NK, CD8+/CD45RA+ Naive Cytotoxic, CD34+
couldn't validate 9 terms: 'CD8+ Cytotoxic T', 'CD34+', 'CD14+ Monocytes', 'Dendritic cells', 'CD56+ NK', 'CD19+ B', 'CD4+/CD45RO+ Memory', 'CD8+/CD45RA+ Naive Cytotoxic', 'CD4+/CD25 T Reg'
→ if you are sure, create new records via ln.CellType() and save to your registry
Let us search the cell type names from the public ontology, and add the name found in the AnnData
object as a synonym to the top match found in the public ontology.
bionty = lb.CellType.bionty() # access the public ontology through bionty
name_mapper = {}
for name in adata_validated.obs.cell_type.unique():
# search the public ontology and use the ontology id of the top match
ontology_id = bionty.search(name).iloc[0].ontology_id
# create a record by loading the top match from bionty
record = lb.CellType.from_bionty(ontology_id=ontology_id)
name_mapper[name] = record.name # map the original name to standardized name
record.save() # save the record
# add the original name as a synonym, so that next time, we can just run .standardize()
record.add_synonym(name)
Show code cell output
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0000451'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0001201'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0001087'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0000910'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0000919'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0002057'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0002101'
✅ created 1 CellType record from Bionty matching ontology_id: 'CL:0000624'
We can now standardize cell type names using the search-based mapper:
adata_validated.obs.cell_type = adata_validated.obs.cell_type.map(name_mapper)
Now, all cell types are validated:
validated = lb.CellType.validate(adata_validated.obs.cell_type)
assert all(validated)
✅ 9 terms (100.00%) are validated for name
We don’t want to store any of the other metadata columns:
for column in ["n_genes", "percent_mito", "louvain"]:
adata.obs.drop(column, axis=1)
Register #
experimental_factors = lb.ExperimentalFactor.lookup()
organism = lb.Organism.lookup()
features = ln.Feature.lookup()
artifact = ln.Artifact.from_anndata(
adata_validated,
description="10x reference adata",
field=lb.Gene.ensembl_gene_id,
)
Show code cell output
💡 path content will be copied to default storage upon `save()` with key `None` ('.lamindb/HUuSmGNrzHq6rv4A07LD.h5ad')
💡 parsing feature names of X stored in slot 'var'
✅ 749 terms (100.00%) are validated for ensembl_gene_id
✅ linked: FeatureSet(uid='B8OgoleyFybqq5ilNQMy', n=749, type='number', registry='bionty.Gene', hash='ZL6ScVsUK3gvyaiIVPVr', created_by_id=1)
💡 parsing feature names of slot 'obs'
✅ 1 term (25.00%) is validated for name
❗ 3 terms (75.00%) are not validated for name: n_genes, percent_mito, louvain
✅ linked: FeatureSet(uid='ZezO0a6PEZKppi5FHE6z', n=1, registry='core.Feature', hash='N9gVA0SgXhhIOPpJq6Rc', created_by_id=1)
As we do not want to manage the remaining unvalidated terms in registries, we can save and annotate the artifact:
artifact.save()
artifact.labels.add(adata_validated.obs.cell_type, features.cell_type)
artifact.labels.add(organism.human, feature=features.organism)
artifact.labels.add(
experimental_factors.single_cell_rna_sequencing, feature=features.assay
)
artifact.describe()
✅ saved 2 feature sets for slots: 'var','obs'
✅ storing artifact 'HUuSmGNrzHq6rv4A07LD' at '/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna/.lamindb/HUuSmGNrzHq6rv4A07LD.h5ad'
✅ loaded: FeatureSet(uid='nk6q9fMyqEBjh68Pu9WV', n=1, registry='core.Feature', hash='gGJB2OIsP_ciYXXiROsx', updated_at=2024-01-08 08:54:10 UTC, created_by_id=1)
✅ linked new feature 'organism' together with new feature set FeatureSet(uid='nk6q9fMyqEBjh68Pu9WV', n=1, registry='core.Feature', hash='gGJB2OIsP_ciYXXiROsx', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
💡 nothing links to it anymore, deleting feature set FeatureSet(uid='nk6q9fMyqEBjh68Pu9WV', n=1, registry='core.Feature', hash='gGJB2OIsP_ciYXXiROsx', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
✅ linked new feature 'assay' together with new feature set FeatureSet(uid='uWA4Un35UpuYiMfGa7Xn', n=2, registry='core.Feature', hash='7ArVlRGQuTpddrowcBwE', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
Artifact(uid='HUuSmGNrzHq6rv4A07LD', suffix='.h5ad', accessor='AnnData', description='10x reference adata', size=853388, hash='eKH1ljAEh7Kd81-o2H4A7w', hash_type='md5', visibility=1, key_is_virtual=True, updated_at=2024-01-08 08:54:26 UTC)
Provenance:
🗃️ storage: Storage(uid='FI07YF4h', root='/home/runner/work/lamin-usecases/lamin-usecases/docs/test-scrna', type='local', updated_at=2024-01-08 08:53:46 UTC, created_by_id=1)
💫 transform: Transform(uid='ManDYgmftZ8C5zKv', name='Standardize and append a batch of data', short_name='scrna2', version='1', type=notebook, updated_at=2024-01-08 08:54:16 UTC, created_by_id=1)
👣 run: Run(uid='Fet6dUOkqCXk3UGiDKMH', run_at=2024-01-08 08:54:16 UTC, transform_id=2, created_by_id=1)
👤 created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-01-08 08:53:46 UTC)
Features:
var: FeatureSet(uid='B8OgoleyFybqq5ilNQMy', n=749, type='number', registry='bionty.Gene', hash='ZL6ScVsUK3gvyaiIVPVr', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
'IL18', 'NPM3', 'S100A9', 'S100A8', 'CNN2', 'ARHGAP45', 'RNF34', 'GPX4', 'S100A6', 'ADISSP', 'S100A4', 'FAM174C', 'SIT1', 'CCDC107', 'RSL1D1', 'TLN1', 'HES4', 'TNFRSF17', 'PCNA', 'RAB13', ...
obs: FeatureSet(uid='ZezO0a6PEZKppi5FHE6z', n=1, registry='core.Feature', hash='N9gVA0SgXhhIOPpJq6Rc', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
🔗 cell_type (9, bionty.CellType): 'dendritic cell', 'B cell, CD19-positive', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte', 'CD38-positive naive B cell', 'CD4-positive, alpha-beta T cell', 'CD16-positive, CD56-dim natural killer cell, human'
external: FeatureSet(uid='uWA4Un35UpuYiMfGa7Xn', n=2, registry='core.Feature', hash='7ArVlRGQuTpddrowcBwE', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
🔗 assay (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
🔗 organism (1, bionty.Organism): 'human'
Labels:
🏷️ organism (1, bionty.Organism): 'human'
🏷️ cell_types (9, bionty.CellType): 'dendritic cell', 'B cell, CD19-positive', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte', 'CD38-positive naive B cell', 'CD4-positive, alpha-beta T cell', 'CD16-positive, CD56-dim natural killer cell, human'
🏷️ experimental_factors (1, bionty.ExperimentalFactor): 'single-cell RNA sequencing'
artifact.view_lineage()
Append the shard to the collection#
Query the previous collection:
collection_v1 = ln.Collection.filter(
name="My versioned scRNA-seq collection", version="1"
).one()
Create a new version of the collection by sharding it across the new artifact
and the artifact underlying version 1 of the collection:
collection_v2 = ln.Collection(
[artifact, collection_v1.artifact],
is_new_version_of=collection_v1,
)
collection_v2.save()
collection_v2.labels.add_from(artifact)
collection_v2.labels.add_from(collection_v1)
Show code cell output
✅ loaded: FeatureSet(uid='hw0zhxi3dij7Lt0UNBM5', n=36390, type='number', registry='bionty.Gene', hash='rMZltwoBCMdVPVR8x6nJ', updated_at=2024-01-08 08:54:07 UTC, created_by_id=1)
✅ loaded: FeatureSet(uid='wOaAlNVtOmphu4COFZm8', n=4, registry='core.Feature', hash='H9ZrPp76djt1Wqq5zIsf', updated_at=2024-01-08 08:54:09 UTC, created_by_id=1)
✅ loaded: FeatureSet(uid='uWA4Un35UpuYiMfGa7Xn', n=2, registry='core.Feature', hash='7ArVlRGQuTpddrowcBwE', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
💡 adding collection [1] as input for run 2, adding parent transform 1
💡 adding artifact [1] as input for run 2, adding parent transform 1
💡 transferring cell_type
💡 transferring assay
💡 transferring organism
💡 transferring cell_type
💡 transferring assay
💡 transferring tissue
💡 transferring donor
💡 adding collection [1] as input for run 2, adding parent transform 1
Version 2 of the collection covers significantly more conditions.
collection_v2.describe()
Collection(uid='WVSIN7lmwVt17odX6548', name='My versioned scRNA-seq collection', version='2', hash='BOAf0T5UbN_iOe3fQDyq', visibility=1, updated_at=2024-01-08 08:54:27 UTC)
Provenance:
💫 transform: Transform(uid='ManDYgmftZ8C5zKv', name='Standardize and append a batch of data', short_name='scrna2', version='1', type=notebook, updated_at=2024-01-08 08:54:16 UTC, created_by_id=1)
👣 run: Run(uid='Fet6dUOkqCXk3UGiDKMH', run_at=2024-01-08 08:54:16 UTC, transform_id=2, created_by_id=1)
👤 created_by: User(uid='DzTjkKse', handle='testuser1', name='Test User1', updated_at=2024-01-08 08:53:46 UTC)
Features:
var: FeatureSet(uid='hw0zhxi3dij7Lt0UNBM5', n=36390, type='number', registry='bionty.Gene', hash='rMZltwoBCMdVPVR8x6nJ', updated_at=2024-01-08 08:54:07 UTC, created_by_id=1)
'MIR1302-2HG', 'FAM138A', 'OR4F5', 'None', 'None', 'None', 'None', 'None', 'None', 'None', 'OR4F29', 'None', 'OR4F16', 'None', 'LINC01409', 'FAM87B', 'LINC01128', 'LINC00115', 'FAM41C', 'None', ...
obs: FeatureSet(uid='wOaAlNVtOmphu4COFZm8', n=4, registry='core.Feature', hash='H9ZrPp76djt1Wqq5zIsf', updated_at=2024-01-08 08:54:09 UTC, created_by_id=1)
🔗 cell_type (40, bionty.CellType): 'dendritic cell', 'B cell, CD19-positive', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte', 'CD38-positive naive B cell', 'CD4-positive, alpha-beta T cell', 'classical monocyte', 'T follicular helper cell', ...
🔗 assay (4, bionty.ExperimentalFactor): '10x 3' v3', '10x 5' v2', '10x 5' v1', 'single-cell RNA sequencing'
🔗 tissue (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
🔗 donor (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
external: FeatureSet(uid='uWA4Un35UpuYiMfGa7Xn', n=2, registry='core.Feature', hash='7ArVlRGQuTpddrowcBwE', updated_at=2024-01-08 08:54:26 UTC, created_by_id=1)
🔗 assay (4, bionty.ExperimentalFactor): '10x 3' v3', '10x 5' v2', '10x 5' v1', 'single-cell RNA sequencing'
🔗 organism (1, bionty.Organism): 'human'
Labels:
🏷️ organism (1, bionty.Organism): 'human'
🏷️ tissues (17, bionty.Tissue): 'blood', 'thoracic lymph node', 'spleen', 'lung', 'mesenteric lymph node', 'lamina propria', 'liver', 'jejunal epithelium', 'omentum', 'bone marrow', ...
🏷️ cell_types (40, bionty.CellType): 'dendritic cell', 'B cell, CD19-positive', 'effector memory CD4-positive, alpha-beta T cell, terminally differentiated', 'cytotoxic T cell', 'CD8-positive, CD25-positive, alpha-beta regulatory T cell', 'CD14-positive, CD16-negative classical monocyte', 'CD38-positive naive B cell', 'CD4-positive, alpha-beta T cell', 'classical monocyte', 'T follicular helper cell', ...
🏷️ experimental_factors (4, bionty.ExperimentalFactor): '10x 3' v3', '10x 5' v2', '10x 5' v1', 'single-cell RNA sequencing'
🏷️ ulabels (12, core.ULabel): 'D496', '621B', 'A29', 'A36', 'A35', '637C', 'A52', 'A37', 'D503', '640C', ...
🏷️ unordered_artifacts (2, core.Artifact): 'scrna/conde22.h5ad', 'None'
View data lineage:
collection_v2.view_lineage()